Fractional Differential Problem of Some Type of Fractional Rational Function

Chii-Huei Yu

School of Mathematics and Statistics, Zhaoqing University, Guangdong, China

DOI: https://doi.org/10.5281/zenodo.13969239

Published Date: 22-October-2024

Abstract: In this paper, based on Jumarie type of Riemann-Liouville (R-L) fractional derivative and a new multiplication of fractional analytic functions, we find arbitrary order fractional derivative of some type of fractional function. In fact, our result is a generalization of ordinary calculus result.

Keywords: Jumarie type of R-L fractional derivative, new multiplication, fractional analytic functions, fractional rational function.

I. INTRODUCTION

Fractional calculus includes the derivative and integral of any real order or complex order. In the past few decades, fractional calculus has gained much attention as a result of its demonstrated applications in various fields of science and engineering such as physics, biology, mechanics, electrical engineering, viscoelasticity, dynamics, control theory, modelling, economics, and so on [1-11].

However, fractional calculus is different from ordinary calculus. The definition of fractional derivative is not unique. Common definitions include Riemann Liouville (R-L) fractional derivative, Caputo fractional derivative, Grunwald-Letnikov (G-L) fractional derivative and Jumarie's modification of R-L fractional derivative [12-16]. Since Jumarie type of R-L fractional derivative helps to avoid non-zero fractional derivative of constant function, it is easier to use this definition to connect fractional calculus with classical calculus.

In this paper, based on the Jumarie's modified R-L fractional calculus and a new multiplication of fractional analytic functions, we find arbitrary order α -fractional derivative of the following α -fractional function:

$$f_{\alpha}(x^{\alpha}) = \left[\left(s \frac{1}{\Gamma(\alpha+1)} x^{\alpha} + t \right)^{\otimes_{\alpha} 2} - r^{2} \right]^{\otimes_{\alpha} (-p)} \otimes_{\alpha} \left[\sum_{n=0}^{\lfloor p/2 \rfloor} {p \choose 2n} r^{2n} \left[s \frac{1}{\Gamma(\alpha+1)} x^{\alpha} + t \right]^{\otimes_{\alpha} (p-2n)} \right],$$

where $0 < \alpha \le 1$, *s*, *t*, *r* are real numbers, and *p* is a positive integer. In fact, our result is a generalization of classical calculus result.

II. PRELIMINARIES

At first, we introduce the fractional derivative used in this paper and its properties.

Definition 2.1 ([17]): Let $0 < \alpha \le 1$, and x_0 be a real number. The Jumarie type of Riemann-Liouville (R-L) α -fractional derivative is defined by

$$\left({}_{x_0}D^{\alpha}_x\right)[f(x)] = \frac{1}{\Gamma(1-\alpha)}\frac{d}{dx}\int_{x_0}^x \frac{f(t)-f(x_0)}{(x-t)^{\alpha}}dt \ . \tag{1}$$

where $\Gamma(\)$ is the gamma function. On the other hand, for any positive integer m, we define $\binom{\alpha}{x_0} D_x^{\alpha}^m[f(x)] = \binom{\alpha}{x_0} D_x^{\alpha} \binom{\alpha}{x_0} \binom{$

International Journal of Mathematics and Physical Sciences Research ISSN 2348-5736 (Online) Vol. 12, Issue 2, pp: (8-12), Month: October 2024 - March 2025, Available at: <u>www.researchpublish.com</u>

Proposition 2.2 ([18]): If α, β, x_0, C are real numbers and $\beta \ge \alpha > 0$, then

$$\left({}_{x_0}D_x^{\alpha}\right)\left[(x-x_0)^{\beta}\right] = \frac{\Gamma(\beta+1)}{\Gamma(\beta-\alpha+1)}(x-x_0)^{\beta-\alpha},\tag{2}$$

and

$$\left({}_{x_0}D^{\alpha}_x\right)[C] = 0. \tag{3}$$

Next, we introduce the definition of fractional analytic function.

Definition 2.3 ([19]): If x, x_0 , and a_k are real numbers for all $k, x_0 \in (a, b)$, and $0 < \alpha \le 1$. If the function $f_{\alpha}: [a, b] \to R$ can be expressed as an α -fractional power series, i.e., $f_{\alpha}(x^{\alpha}) = \sum_{n=0}^{\infty} \frac{a_n}{\Gamma(n\alpha+1)} (x - x_0)^{n\alpha}$ on some open interval containing x_0 , then we say that $f_{\alpha}(x^{\alpha})$ is α -fractional analytic at x_0 . Furthermore, if $f_{\alpha}: [a, b] \to R$ is continuous on closed interval [a, b] and it is α -fractional analytic at every point in open interval (a, b), then f_{α} is called an α -fractional analytic function on [a, b].

Next, a new multiplication of fractional analytic functions is introduced below.

Definition 2.4 ([20]): Let $0 < \alpha \le 1$, and x_0 be a real number. If $f_{\alpha}(x^{\alpha})$ and $g_{\alpha}(x^{\alpha})$ are two α -fractional analytic functions defined on an interval containing x_0 ,

$$f_{\alpha}(x^{\alpha}) = \sum_{n=0}^{\infty} \frac{a_n}{\Gamma(n\alpha+1)} (x - x_0)^{n\alpha}, \tag{4}$$

$$g_{\alpha}(x^{\alpha}) = \sum_{n=0}^{\infty} \frac{b_n}{\Gamma(n\alpha+1)} (x - x_0)^{n\alpha} .$$
⁽⁵⁾

Then we define

$$f_{\alpha}(x^{\alpha}) \bigotimes_{\alpha} g_{\alpha}(x^{\alpha})$$

$$= \sum_{n=0}^{\infty} \frac{a_n}{\Gamma(n\alpha+1)} (x - x_0)^{n\alpha} \bigotimes_{\alpha} \sum_{n=0}^{\infty} \frac{b_n}{\Gamma(n\alpha+1)} (x - x_0)^{n\alpha}$$

$$= \sum_{n=0}^{\infty} \frac{1}{\Gamma(n\alpha+1)} \left(\sum_{m=0}^n \binom{n}{m} a_{n-m} b_m \right) (x - x_0)^{n\alpha}.$$
(6)

Equivalently,

$$f_{\alpha}(x^{\alpha}) \otimes_{\alpha} g_{\alpha}(x^{\alpha})$$

$$= \sum_{n=0}^{\infty} \frac{a_{n}}{n!} \left(\frac{1}{\Gamma(\alpha+1)} (x-x_{0})^{\alpha} \right)^{\otimes_{\alpha} n} \otimes_{\alpha} \sum_{n=0}^{\infty} \frac{b_{n}}{n!} \left(\frac{1}{\Gamma(\alpha+1)} (x-x_{0})^{\alpha} \right)^{\otimes_{\alpha} n}$$

$$= \sum_{n=0}^{\infty} \frac{1}{n!} \left(\sum_{m=0}^{n} {n \choose m} a_{n-m} b_{m} \right) \left(\frac{1}{\Gamma(\alpha+1)} (x-x_{0})^{\alpha} \right)^{\otimes_{\alpha} n}.$$
(7)

Definition 2.5 ([21]): If $0 < \alpha \le 1$, and $f_{\alpha}(x^{\alpha})$, $g_{\alpha}(x^{\alpha})$ are two α -fractional analytic functions defined on an interval containing x_0 ,

$$f_{\alpha}(x^{\alpha}) = \sum_{n=0}^{\infty} \frac{a_n}{\Gamma(n\alpha+1)} (x - x_0)^{n\alpha} = \sum_{n=0}^{\infty} \frac{a_n}{n!} \left(\frac{1}{\Gamma(\alpha+1)} (x - x_0)^{\alpha} \right)^{\otimes_{\alpha} n},$$
(8)

$$g_{\alpha}(x^{\alpha}) = \sum_{n=0}^{\infty} \frac{b_n}{\Gamma(n\alpha+1)} (x - x_0)^{n\alpha} = \sum_{n=0}^{\infty} \frac{b_n}{n!} \left(\frac{1}{\Gamma(\alpha+1)} (x - x_0)^{\alpha}\right)^{\bigotimes_{\alpha} n}.$$
(9)

The compositions of $f_{\alpha}(x^{\alpha})$ and $g_{\alpha}(x^{\alpha})$ are defined by

$$(f_{\alpha} \circ g_{\alpha})(x^{\alpha}) = f_{\alpha}(g_{\alpha}(x^{\alpha})) = \sum_{n=0}^{\infty} \frac{a_n}{n!} (g_{\alpha}(x^{\alpha}))^{\otimes_{\alpha} n},$$
(10)

and

$$(g_{\alpha} \circ f_{\alpha})(x^{\alpha}) = g_{\alpha}(f_{\alpha}(x^{\alpha})) = \sum_{n=0}^{\infty} \frac{b_n}{n!} (f_{\alpha}(x^{\alpha}))^{\otimes_{\alpha} n}.$$
(11)

Page | 9

International Journal of Mathematics and Physical Sciences Research ISSN 2348-5736 (Online) Vol. 12, Issue 2, pp: (8-12), Month: October 2024 - March 2025, Available at: <u>www.researchpublish.com</u>

Definition 2.6 ([22]): Let $0 < \alpha \le 1$, and $f_{\alpha}(x^{\alpha})$, $g_{\alpha}(x^{\alpha})$ be two α -fractional analytic functions. Then $(f_{\alpha}(x^{\alpha}))^{\otimes_{\alpha} n} = f_{\alpha}(x^{\alpha}) \otimes_{\alpha} \cdots \otimes_{\alpha} f_{\alpha}(x^{\alpha})$ is called the *n*th power of $f_{\alpha}(x^{\alpha})$. On the other hand, if $f_{\alpha}(x^{\alpha}) \otimes_{\alpha} g_{\alpha}(x^{\alpha}) = 1$, then $g_{\alpha}(x^{\alpha})$ is called the \otimes_{α} reciprocal of $f_{\alpha}(x^{\alpha})$, and is denoted by $(f_{\alpha}(x^{\alpha}))^{\otimes_{\alpha} -1}$.

Notation 2.7: If r is a real number and n is a positive integer. Define $[r]_n = r(r+1)\cdots(r+n-1)$ and $[r]_0 = 1$.

Notation 2.8: If s is a real number, the largest integer less than or equal to s is denoted by [s].

Theorem 2.9 (fractional binomial theorem): If $0 < \alpha \le 1$, *n* is a positive integer and $f_{\alpha}(x^{\alpha})$, $g_{\alpha}(x^{\alpha})$ are two α -fractional analytic functions. Then

$$[f_{\alpha}(x^{\alpha}) + g_{\alpha}(x^{\alpha})]^{\otimes_{\alpha} n} = \sum_{k=0}^{n} {n \choose k} (f_{\alpha}(x^{\alpha}))^{\otimes_{\alpha} k} \otimes_{\alpha} (g_{\alpha}(x^{\alpha}))^{\otimes_{\alpha} (n-k)} , \qquad (12)$$

where $\binom{n}{k} = \frac{n!}{k!(n-k)!}$.

III. MAIN RESULTS

In this section, we find the fractional derivatives of some type of fractional rational function. At first, we need a lemma. **Lemma 3.1:** If $0 < \alpha \le 1$, *s*, *t*, *r* are real numbers, and *p* is a positive integer, then

$$\frac{1}{2}\left\{\left[\left(s\frac{1}{\Gamma(\alpha+1)}x^{\alpha}+t\right)+r\right]^{\otimes_{\alpha}(-p)}+\left[\left(s\frac{1}{\Gamma(\alpha+1)}x^{\alpha}+t\right)-r\right]^{\otimes_{\alpha}(-p)}\right\}$$
$$=\left[\left(s\frac{1}{\Gamma(\alpha+1)}x^{\alpha}+t\right)^{\otimes_{\alpha}2}-r^{2}\right]^{\otimes_{\alpha}(-p)}\otimes_{\alpha}\left[\sum_{n=0}^{\lfloor p/2 \rfloor}{p \choose 2n}r^{2n}\left[s\frac{1}{\Gamma(\alpha+1)}x^{\alpha}+t\right]^{\otimes_{\alpha}(p-2n)}\right].$$
(13)

Proof By fractional binomial theorem,

$$\begin{split} &\frac{1}{2} \left\{ \left[\left(s \frac{1}{\Gamma(\alpha+1)} x^{\alpha} + t \right) + r \right]^{\otimes_{\alpha}(-p)} + \left[\left(s \frac{1}{\Gamma(\alpha+1)} x^{\alpha} + t \right) - r \right]^{\otimes_{\alpha}(-p)} \right\} \\ &= \frac{1}{2} \left\{ \left[\left(s \frac{1}{\Gamma(\alpha+1)} x^{\alpha} + t \right)^{\otimes_{\alpha} 2} - r^{2} \right]^{\otimes_{\alpha}(-p)} \otimes_{\alpha} \left[\left[\left(s \frac{1}{\Gamma(\alpha+1)} x^{\alpha} + t \right) + r \right]^{\otimes_{\alpha} p} + \left[\left(s \frac{1}{\Gamma(\alpha+1)} x^{\alpha} + t \right) - r \right]^{\otimes_{\alpha} p} \right] \right\} \\ &= \frac{1}{2} \left\{ \left[\left(s \frac{1}{\Gamma(\alpha+1)} x^{\alpha} + t \right)^{\otimes_{\alpha} 2} - r^{2} \right]^{\otimes_{\alpha}(-p)} \otimes_{\alpha} \left[\sum_{n=0}^{p} \binom{p}{n} r^{n} \left[s \frac{1}{\Gamma(\alpha+1)} x^{\alpha} + t \right]^{\otimes_{\alpha}(p-n)} \right] + \sum_{n=0}^{p} \binom{p}{n} (-r)^{n} \left[s \frac{1}{\Gamma(\alpha+1)} x^{\alpha} + t \right]^{\otimes_{\alpha} (p-n)} \right] \right\} \\ &= t \otimes_{\alpha} (p-n) \end{split}$$

$$= \frac{1}{2} \left\{ \left[\left(s \frac{1}{\Gamma(\alpha+1)} x^{\alpha} + t \right)^{\otimes_{\alpha} 2} - r^{2} \right]^{\otimes_{\alpha} (-p)} \otimes_{\alpha} \left[\sum_{n=0}^{p} {p \choose n} \left[1 + (-1)^{n} \right] r^{n} \left[s \frac{1}{\Gamma(\alpha+1)} x^{\alpha} + t \right]^{\otimes_{\alpha} (p-n)} \right] \right\}$$
$$= \left[\left(s \frac{1}{\Gamma(\alpha+1)} x^{\alpha} + t \right)^{\otimes_{\alpha} 2} - r^{2} \right]^{\otimes_{\alpha} (-p)} \otimes_{\alpha} \left[\sum_{n=0}^{\lfloor p/2 \rfloor} {p \choose 2n} r^{2n} \left[s \frac{1}{\Gamma(\alpha+1)} x^{\alpha} + t \right]^{\otimes_{\alpha} (p-2n)} \right].$$
q.e.d.

Theorem 3.2: If $0 < \alpha \le 1$, s,t,r are real numbers, and m,p are positive integers, then the m-th order α -fractional derivative of the α -fractional function

$$f_{\alpha}(x^{\alpha}) = \left[\left(s \frac{1}{\Gamma(\alpha+1)} x^{\alpha} + t \right)^{\otimes_{\alpha} 2} - r^{2} \right]^{\otimes_{\alpha} (-p)} \otimes_{\alpha} \left[\sum_{n=0}^{\lfloor p/2 \rfloor} {p \choose 2n} r^{2n} \left[s \frac{1}{\Gamma(\alpha+1)} x^{\alpha} + t \right]^{\otimes_{\alpha} (p-2n)} \right]$$
(14)

is

 $\left({}_0 D^\alpha_x \right)^m [f_\alpha(x^\alpha)]$

Page | 10

International Journal of Mathematics and Physical Sciences Research ISSN 2348-5736 (Online) Vol. 12, Issue 2, pp: (8-12), Month: October 2024 - March 2025, Available at: <u>www.researchpublish.com</u>

$$= (-1)^m s^m [p]_m \left\{ \left[\left(s \frac{1}{\Gamma(\alpha+1)} x^\alpha + t \right)^{\otimes_\alpha 2} - r^2 \right]^{\otimes_\alpha (-p-m)} \otimes_\alpha \left[\sum_{k=0}^{\lfloor (p+m)/2 \rfloor} {p+m \choose 2k} r^{2p} \left(s \frac{1}{\Gamma(\alpha+1)} x^\alpha + t \right)^{\otimes_\alpha (p+m-2k)} \right] \right\}.$$
(15)

Proof By Lemma 3.1

$$\left({}_{0}D_{x}^{\alpha}\right)^{m}[f_{\alpha}(x^{\alpha})]$$

$$= \left({}_{0}D_{x}^{\alpha}\right)^{m} \left[\left[\left(s \frac{1}{\Gamma(\alpha+1)}x^{\alpha} + t \right)^{\otimes_{\alpha}2} - r^{2} \right]^{\otimes_{\alpha}(-p)} \otimes_{\alpha} \left[\sum_{n=0}^{|p/2|} {\binom{p}{2n}} r^{2n} \left[s \frac{1}{\Gamma(\alpha+1)}x^{\alpha} + t \right]^{\otimes_{\alpha}(p-2n)} \right] \right]$$

$$= \left({}_{0}D_{x}^{\alpha}\right)^{m} \left[\frac{1}{2} \left\{ \left[\left(s \frac{1}{\Gamma(\alpha+1)}x^{\alpha} + t \right)^{\otimes_{\alpha}2} - r^{2} \right]^{\otimes_{\alpha}(-p)} \otimes_{\alpha} \left[\sum_{n=0}^{p} {\binom{p}{n}} [1 + (-1)^{n}]r^{n} \left[s \frac{1}{\Gamma(\alpha+1)}x^{\alpha} + t \right]^{\otimes_{\alpha}(p-n)} \right] \right\} \right]$$

$$= \frac{1}{2} \left({}_{0}D_{x}^{\alpha} \right)^{m} \left[\left[\left(s \frac{1}{\Gamma(\alpha+1)}x^{\alpha} + t \right) + r \right]^{\otimes_{\alpha}(-p)} + \left[\left(s \frac{1}{\Gamma(\alpha+1)}x^{\alpha} + t \right) - r \right]^{\otimes_{\alpha}(-p)} \right]$$

$$= \frac{1}{2} s^{m} (-1)^{m} [p]_{m} \left\{ \left[\left(s \frac{1}{\Gamma(\alpha+1)}x^{\alpha} + t \right) + r \right]^{\otimes_{\alpha}2} - r^{2} \right]^{\otimes_{\alpha}(-p-m)} \otimes_{\alpha} \left[\left[\left(s \frac{1}{\Gamma(\alpha+1)}x^{\alpha} + t \right) + r \right]^{\otimes_{\alpha}(p+m)} + \left[\left(s \frac{1}{\Gamma(\alpha+1)}x^{\alpha} + t \right) + r \right]^{\otimes_{\alpha}(p+m)} + \left[\left(s \frac{1}{\Gamma(\alpha+1)}x^{\alpha} + t \right) + r \right]^{\otimes_{\alpha}(p+m)} + \left[\left(s \frac{1}{\Gamma(\alpha+1)}x^{\alpha} + t \right) + r \right]^{\otimes_{\alpha}(p+m)} + \left[\left(s \frac{1}{\Gamma(\alpha+1)}x^{\alpha} + t \right) + r \right]^{\otimes_{\alpha}(p+m)}$$

$$= (-1)^m s^m [p]_m \left\{ \left[\left(s \frac{1}{\Gamma(\alpha+1)} x^{\alpha} + t\right)^{\bigotimes_{\alpha} 2} - r^2 \right]^{\bigotimes_{\alpha} (-p-m)} \bigotimes_{\alpha} \left[\sum_{k=0}^{\lfloor (p+m)/2 \rfloor} {p+m \choose 2k} r^{2p} \left(s \frac{1}{\Gamma(\alpha+1)} x^{\alpha} + t\right)^{\bigotimes_{\alpha} (p+m-2k)} \right] \right\}.$$
q.e.d.

IV. CONCLUSION

In this paper, based on Jumarie's modified R-L fractional calculus and a new multiplication of fractional analytic functions, we obtain arbitrary order fractional derivative of some type of fractional rational function. In fact, our result is a generalization of classical calculus result. In the future, we will continue to use Jumarie type of R-L fractional calculus and a new multiplication of fractional analytic functions to study the problems in fractional differential equations and applied mathematics.

REFERENCES

- F. Mainardi, Fractional calculus: some basic problems in continuum and statistical mechanics, Fractals and Fractional Calculus in Continuum Mechanics, A. Carpinteri and F. Mainardi, Eds., pp. 291-348, Springer, Wien, Germany, 1997.
- [2] E. Soczkiewicz, Application of fractional calculus in the theory of viscoelasticity, Molecular and Quantum Acoustics, vol.23, pp. 397-404. 2002.
- [3] J. T. Machado, Fractional Calculus: Application in Modeling and Control, Springer New York, 2013.
- [4] M. Teodor, Atanacković, Stevan Pilipović, Bogoljub Stanković, Dušan Zorica, Fractional Calculus with Applications in Mechanics: Vibrations and Diffusion Processes, John Wiley & Sons, Inc., 2014.
- [5] R. L. Magin, Fractional calculus in bioengineering, 13th International Carpathian Control Conference, 2012.

International Journal of Mathematics and Physical Sciences Research ISSN 2348-5736 (Online) Vol. 12, Issue 2, pp: (8-12), Month: October 2024 - March 2025, Available at: www.researchpublish.com

- [6] H. A. Fallahgoul, S. M. Focardi and F. J. Fabozzi, Fractional calculus and fractional processes with applications to financial economics, theory and application, Elsevier Science and Technology, 2016.
- [7] Mohd. Farman Ali, Manoj Sharma, Renu Jain, "An application of fractional calculus in electrical engineering, "Advanced Engineering Technology and Application, vol. 5, no. 2, pp, 41-45, 2016.
- [8] C. -H. Yu, A study on fractional RLC circuit, International Research Journal of Engineering and Technology, vol. 7, no. 8, pp. 3422-3425, 2020.
- [9] C. -H. Yu, A new insight into fractional logistic equation, International Journal of Engineering Research and Reviews, vol. 9, no. 2, pp.13-17, 2021.
- [10] R. Hilfer (Ed.), Applications of Fractional Calculus in Physics, WSPC, Singapore, 2000.
- [11] F. Duarte and J. A. T. Machado, Chaotic phenomena and fractional-order dynamics in the trajectory control of redundant manipulators, Nonlinear Dynamics, vol. 29, no. 1-4, pp. 315-342, 2002.
- [12] K. B. Oldham and J. Spanier, The Fractional Calculus, Academic Press, Inc., 1974.
- [13] S. Das, Functional Fractional Calculus, 2nd ed. Springer-Verlag, 2011.
- [14] K. S. Miller, B. Ross, An Introduction to the Fractional Calculus and Fractional Differential Equations, John Wiley & Sons, New York, USA, 1993.
- [15] I. Podlubny, Fractional Differential Equations, Academic Press, San Diego, Calif, USA, 1999.
- [16] K. Diethelm, The Analysis of Fractional Differential Equations, Springer-Verlag, 2010.
- [17] C. -H. Yu, Study of fractional analytic functions and local fractional calculus, International Journal of Scientific Research in Science, Engineering and Technology, vol. 8, no. 5, pp. 39-46, 2021.
- [18] C. -H. Yu, Study of fractional Gaussian integral, International Journal of Engineering Research and Reviews, vol. 11, no. 1, pp. 1-5, 2023.
- [19] C. -H. Yu, Study of a fractional function equation, International Journal of Novel Research in Physics Chemistry and Mathematics, vol. 10, no. 1, pp. 6-9, 2023.
- [20] C. -H. Yu, Application of differentiation under fractional integral sign, International Journal of Mathematics and Physical Sciences Research, vol. 10, no. 2, pp. 40-46, 2022.
- [21] C. -H. Yu, Research on fractional exponential function and logarithmic function, International Journal of Novel Research in Interdisciplinary Studies, vol. 9, no. 2, pp. 7-12, 2022.
- [22] C. -H. Yu, Limits of some fractional power exponential functions, International Journal of Engineering Research and Reviews, vol. 10, no. 4, pp. 9-14, 2022.